

新闻资讯
本文将深入探讨SiC MOSFET为何能够取代IGBT,并分析其在实际应用中的优势。
目前,关于氢作为交通燃料的炒作正达到狂热的程度,政府、汽车制造商和石油公司正投入数亿美元,以使氢能源汽车概念更具吸引力。
然而,高效地控制这些高压系统可能非常具有挑战性。这篇文章介绍一款用于绝缘栅双极型晶体管(IGBT)的可编程栅极驱动器提供了一些改进。
这些设备配备了高功耗的CPU和GPU,需要功率范围在300瓦到500瓦的电源模块(PSU)。由于空间和厚度的限制,这种PSU的设计本质上是困难的,需要高功率密度。
在大多数离散PLC系统中,故障排除输出设备的过程相当简单。如果输出端子工作正常,那么在‘关闭’时应测量到0V,在‘开启’时应测量到全源电压。
本文将描述硅掺杂对高温下散装GaN热导率的影响,并以实验证据证明理论处理的有效性。
GaN晶体管凭借其优异的性能和广泛的应用前景,在电子技术领域逐渐成为了工程师们关注的焦点。那么,GaN晶体管是否能像MOSFET(场效应晶体管)一样易于使用呢?
基于硅半导体的电子设备对于现代世界至关重要。它们在设计用于中等温度(最高可达250C或482F)的系统时表现良好。但是,一旦温度升高到300C(572F)以上,基于硅的电子设备无法长时间运行。
氮化镓(GaN)器件在功率转换器中具有多种优势,包括更高的效率、功率密度和高频开关能力。横向GaN高电子迁移率晶体管(HEMT)功率器件在这些应用中市场增长强劲。
MOSFET(金属-氧化物-半导体场效应晶体管)放大器因其高效率、低功耗和良好的线性特性而被广泛应用于各种电子设备中。这篇文章将详细介绍MOSFET放大器的工作原理
碳化硅在许多电力转换应用中比硅表现出显著的性能优势。进一步的成本降低和大规模生产是满足全球电气化带来的对电力半导体强劲需求的关键。在本文中,我们将详细讨论工程化SiC基板的潜在优势。
碳化硅(SiC)技术作为一种新兴的功率半导体材料,以其高效能、高耐压和高频率的特性,正在迅速成为电动汽车充电解决方案中的重要一环。本文将详细探讨SiC在电动汽车充电中的优势
业界首款采用TOLL封装的4毫欧硅碳化硅(SiC)结型场效应晶体管(JFET)。这一成果标志着在标准分立封装的650V至750V功率器件中实现了最低的导通电阻
直流电动机驱动器有多种类型,主要分为硅控整流器(SCR)和脉宽调制(PWM)驱动器两类。
CMOS芯片也叫做互补金属氧化物半导体,在现代电子设备中扮演着关键角色。它不仅仅是许多设备的核心组件之一,也是技术进步的象征。
在传统意义上,硅功率器件如IGBT或MOSFET通过焊接固定在金属陶瓷基板上,使用铝线键合作为互连接技术,并使用焊膏或导热脂将功率模块连接到底板或散热器
智能功率模块(IPM)通常用于提供紧凑、高效且安全的电机控制驱动。在本文中,我们将重点介绍业界首款基于GaN的IPM,目标应用包括家用电器和供暖、通风和空调(HVAC)系统。
第七代1200 V QDual3绝缘栅双极型晶体管(IGBT)功率模块,无需增加额外的热量或设计修改即可提供高达10%的功率提升。